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On the disturbance growth in an asymptotic
suction boundary layer
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An experimental and theoretical study on the effect of boundary layer suction on the
laminar–turbulent transition process has been carried out. In the study an asymptotic
suction boundary layer was established in a wind tunnel with a free-stream velocity
of 5.0 m s−1. Wall-normal suction (suction velocity 1.44 cm s−1) was applied over a
large area and the boundary layer was nearly constant over a length of 1800 mm.
Measurements were made both with and without suction so comparisons between
the two cases could easily be made. Measurements of the development of the mean
velocity distribution showed good agreement with theory. The Reynolds number based
on the displacement thickness for the suction boundary layer was 347. Experiments
on both the development of forced Tollmien–Schlichting (TS) waves and boundary
layer disturbances introduced by free-stream turbulence were carried out. Spatial
linear stability calculations for TS-waves, where the wall-normal velocity component
is accounted for, were carried out for comparison with the experiments. This
comparison shows satisfactory agreement even though the stability of the asymptotic
suction profile is somewhat overpredicted by the theory. Free-stream turbulence
(FST) was generated by three different grids, giving turbulence intensities at the
leading edge of the plate between 1.4% and 4.0%. The FST induces disturbances in
the boundary layer and it was shown that for the present suction rate the disturbance
level inside the boundary layer is constant and becomes proportional to the FST
intensity. In all cases transition was prevented when suction was applied whereas
without suction the two highest levels of grid turbulence gave rise to transition.
Despite a twofold reduction in the boundary layer thickness in the suction case
compared to the no suction case the spanwise scale of the streaky structures was
almost constant.

1. Introduction
One area of significant recent interest in fluid dynamics is laminar flow control

(LFC). A possible method of LFC is to apply suction at the wall. A description of
this control method is given in Joslin (1998), where it is pointed out that LFC is a
method to delay the laminar–turbulent transition and not to relaminarize the flow.
The energy cost is typically one order of magnitude higher in the latter case, which
makes the distinction appropriate since the optimal performance is not obtained (as
one might believe) when the suction completely absorbs the boundary layer. The
more suction that is used the steeper the velocity gradient of the boundary layer
at the wall, implying an increase in skin friction. Therefore, the balance between
maintaining laminar flow and keeping a low energy consumption is actually the
optimal performance.
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Figure 1. Velocity profiles for the Blasius and the asymptotic suction boundary layers. No
suction (unfilled symbols), suction (filled symbols) and theory (lines). Asymptotic suction
profile (solid line, �) at x = 1800, Blasius profiles (dashed line) at x = 300 mm (�) and at
x = 1800 mm (�). –·–·, �, The difference between the two velocity profiles.

The present paper describes theoretical and experimental work on laminar–
turbulent transition in a flat-plate boundary layer when uniform suction through
the surface is applied. (In a physical situation uniform suction is an idealization,
since the pore size is finite. If the ratio between the boundary layer thickness and
the pore size is large the suction will be close to uniform.) A special case is when
the so-called asymptotic suction profile is obtained. This flow condition is obtained
at some distance downstream the leading edge of a flat plate when uniform suction
is applied over a large area. An interesting feature is that an analytic solution of the
uniform suction problem may be derived from the boundary layer equations, resulting
in an exponential profile (the asymptotic suction profile). The suction has a similar
influence on the profile to that of favourable pressure gradient and makes the profile
in the fully developed asymptotic region much more stable than the Blasius profile.

The asymptotic boundary layer flow has been dealt with extensively in text books,
see for instance Schlichting (1979), and the theory for the mean flow is straightforward.
One can easily show that the boundary layer profile u(y) becomes

u/U∞ = 1 − e−yV0/ν, (1.1)

where U∞, V0 and ν are the constant free-stream velocity, the suction velocity and
the kinematic viscosity, respectively (x, y and z denote the streamwise, wall-normal
and spanwise coordinate directions). This expression was first derived by Griffith &
Meredith (1936) according to both Jones & Watson (1963) and Schlichting (1979).
In figure 1 experimental data with corresponding theoretical curves are plotted to
show the comparison between the Blasius and the asymptotic suction profiles. The
asymptotic boundary layer thickness can be shown to be directly proportional to ν/V0

and the Reynolds number (Re) based on the boundary layer displacement thickness
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(δ1) becomes

Re = U∞/V0(= 1/Cq),

where Cq is the suction coefficient.
To obtain the stability characteristics of the suction boundary layer the normal

velocity component of the mean flow, i.e. the suction velocity at the wall, can be
incorporated into the disturbance equation and this gives a slightly modified Orr–
Sommerfeld (OS) equation. Also, the boundary condition of the normal fluctuation
velocity needs to be considered, but the standard boundary condition can be used
in the limit when the permeability approaches zero. Hocking (1975) showed that
the critical Reynolds number (Rec), i.e. the lowest Reynolds number for which two-
dimensional waves become amplified, increases by two orders of magnitude compared
to the Blasius boundary layer. Fransson & Alfredsson (2003) showed that for the
case of channel flow with permeable walls and cross-flow the situation becomes more
complicated and can give rise to both stabilization and destabilization depending
on the rate of cross-flow. The critical Reynolds number is lowered by an order of
magnitude (Rec = 667.4) compared to plane Poiseuille flow at a cross-flow velocity of
5.7% of the streamwise velocity.

1.1. Laminar–turbulent transition scenarios

1.1.1. Tollmien–Schlichting-wave-dominated transition

For low environmental disturbances the transition scenario from laminar to
turbulent flow on a flat-plate boundary layer is quite well understood. This class
of transition starts with instability waves that are generated in the receptivity process
taking place close to the leading edge. The initial growth of these waves may
be described by Fourier modes ∝ ei(αx−ωt), where for spatially growing waves the
wavenumber α is complex, α = αr + iαi and the angular frequency ω is real. For such
a mode the linear disturbance equation gives rise to the well-known OS-equation.
These waves grow/decay exponentially and the critical Reynolds number is, according
to Squire’s theorem, obtained for a two-dimensional wave. In figure 2 the stability
diagram (based on linear parallel theory) is given for the Blasius profile. The solid
lines are contours of the growth factor (αi) and the bold solid line is the neutral
stability curve, i.e. the contour line of αi = 0. The dash-dotted lines correspond to
contour lines of constant wavenumber (αr ). The Reynolds number (Re) (which will
be used throughout this paper) is based on the displacement thickness (δ1), and F is
the non-dimensionalized frequency defined as F = (ων/U 2

∞) × 106.
If a TS-wave in a Blasius boundary layer reaches high enough amplitude (� 1%

of U∞), three-dimensional waves and vortices develop (still laminar) that give rise to
the appearance of turbulent spots which merge and bring the whole flow into a fully
turbulent state. The first successful wind tunnel experiment on TS-waves was carried
out and reported by Schubauer & Skramstad (1948). However, these results were not in
fully agreement with theory and for a long time the discrepancy between linear parallel
stability theory and experiments was believed to be due to the non-parallel effect of a
growing boundary layer. However, Fasel & Konzelmann (1990) found through direct
numerical integration of the Navier–Stokes equations that this effect is quite small
and that it hardly influences the amplitude and phase distributions. Later, parabolized
stability calculations by Bertolotti (1991) showed that the non-parallel effect becomes
significantly stronger for three-dimensional disturbances. Finally, the experiments by
Klingmann et al. (1993), performed with a specially designed asymmetric leading edge
(in order to eliminate the pressure suction peak), showed excellent agreement with
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Figure 2. Spatial stability curves for two-dimensional waves in a Blasius boundary layer. Solid
lines are for constant imaginary parts of the streamwise wavenumber (αi) and dash-dotted for
constant real parts (αr ). The bold solid line is the neutral stability curve. The displacement
thickness (δ1) is the characteristic length scale.

non-parallel theory, which is close to the parallel theory results for two-dimensional
disturbances.

1.1.2. By-pass transition and streaky structure

It is well known that for the Blasius boundary layer free-stream turbulence (FST)
induces disturbances into the boundary layer which give rise to streamwise-oriented
structures of low- and high-speed fluid (see e.g. Kendall 1985; Westin 1997; Jacobs &
Durbin 2001; Matsubara & Alfredsson 2001; Fransson & Westin 2001 for thorough
investigations of such a flow). These structures grow in amplitude and establish
a spanwise size which is of the order of the boundary layer thickness far away
from the leading edge. When the streaks reach a certain amplitude they break
down to turbulence, probably through a secondary instability mechanism (see e.g.
Andersson et al. 2001). This type of boundary layer transition can be viewed as a
case of by-pass transition (Morkovin 1969). It is a relatively rapid process by-passing
the traditional TS-wave-dominated transition process, resulting in breakdown to
turbulence at subcritical Reynolds numbers when compared with the value predicted
by traditional theory. Nonlinear theories have been tested (see e.g. Orszag & Patera
1983) in order to find a theory that matched experimental results. However, the
nonlinear terms of the Navier–Stokes equations can be shown not to be part of the
growth mechanism (see Drazin & Reid 1981). A possible mechanism governing this
type of transition scenario is the transient growth. An explanation of this mechanism
is given in e.g. Schmid & Henningson (2001) and arises due to the non-orthogonality
of the OS and Squire eigenmodes. Superposition of such decaying modes may first
produce an algebraic growth followed by an exponential decay, denoted transient
growth. The ‘lift-up’ mechanism proposed by Landahl (1980) is the cornerstone of
the algebraic growth in the study of transient growth. Small perturbations in the
wall-normal direction induce large disturbances in the streamwise direction due to
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the lift-up of low-speed fluid that originally maintains its horizontal momentum. The
presence of viscosity will eventually damp the growth and finally make the disturbance
decay. Some recent publications on the by-pass transition and the transient growth
mechanism are Luchini (2000), Reshotko (2001), and Andersson et al. (2001).

1.2. Previous work on suction

Some experimental work on the asymptotic suction boundary layer has already been
done, but mainly devoted to determination of the mean flow (see Schlichting 1979
and references therein). TS-wave as well as FST experiments in a fully asymptotic
suction boundary layer, which will be presented in this paper, have not previously
been carried out. However, in connection with drag reduction with experiments (i.e.
LFC) suction through spanwise slots, porous panels and discrete holes has been
applied (see e.g. Pfenninger & Groth 1961; Reynolds & Saric 1986; and MacManus
& Eaton 2000 as well as Roberts et al. 2001, respectively). A general review of various
types of surfaces and of the results achieved in wind tunnel tests is given by Gregory
(1961), where practical applications on aircraft are discussed. The flow characteristics
through laser-drilled titanium sheets were investigated by Poll, Danks & Humphreys
(1992b) and were shown to be laminar, incompressible and pipe like. Poll, Danks &
Davies (1992a) conducted an experiment on a cylinder made of a similar laser-drilled
titanium sheet. Suction was found to have a powerful effect upon cross-flow-induced
transition.

In an experimental and numerical study performed by MacManus & Eaton (2000)
the flow physics of boundary layer suction through discrete holes was investigated.
The aim was to use a realizable design and find a critical suction criterion for
transonic cruise conditions. They showed that the suction may destabilize the flow
by introduction of contra-rotating streamwise vortices but that for small enough
perforations (d/δ1 < 0.6) transition is not provoked by suction, independent of suction
velocity.

Roberts et al. (2001) found that two types of instability are possible when non-
uniformities of suction are present. The first one is connected to the classical TS-wave
that is modified due to the non-uniformities and the second concerns streamwise
vortices that are induced due to the non-uniformities alone. The latter instability
was triggered by a finite band of suction wavenumbers and the strength of this
instability was shown to increase almost linearly with the amplitude of the suction
non-uniformities and flow Reynolds number.

Applying continuously distributed suction over a large area may not be the optimal
way of performing active control practically, since the energy consumption becomes
relatively high. Another approach would be to use selective suction to control the
growth of unstable fluctuations. This type of control must be on a detectable quantity,
such as e.g. low-speed streaks. The appearance of streaks with alternate low- and
high-speed velocity observed in a laminar boundary layer subjected to high levels of
free-stream turbulence is also found in the near-wall region of a turbulent boundary
layer. Together with the intermittent bursts or turbulence production events these
are usually referred to as coherent structures. Controlled experiments have been
performed, see e.g. Myose & Blackwelder (1995) and Lundell (2000), in order to
reduce the instability and delay the breakdown of the low-speed streaks in laminar
flows. Myose & Blackwelder (1995) achieved successful control of the breakdown of
Görtler vortices, by pointwise suction of low-speed momentum from the low-speed
streak and in that manner delayed the transition by producing a fuller profile in
the normal direction and by eliminating the difference between low- and high-speed
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regions in the spanwise direction. A similar technique was used by Lundell (2000) who
generated streaks in a plane channel flow by applying suction through streamwise
slots. Secondary instabilities were forced randomly by speakers and were successfully
controlled by localized suction some distance downstream.

1.3. Layout of the paper

In § 2 the boundary layer equations for the evolution of the asymptotic suction
boundary layer are put forward as well as the stability equations when the normal
velocity is taken into account. Some results on both the mean profile evolution
and stability are then given for the asymptotic suction boundary layer. The design
philosophy of the leading edge of the experimental plate is described in § 3 together
with characterization of the porous material, the detailed construction of the flat plate,
and the TS-wave excitation method. The different turbulent length scales and energy
spectra generated by the three different turbulence-generating grids are also given.
In § 4 the experimental results are given for the Blasius flow above the porous plate
and the streamwise baseline flow of the suction case, as well as the corresponding
TS-waves results. Furthermore, results of the disturbance evolution in both the no
suction and suction cases when FST is present are given and compared in detail. It is
clearly shown that suction can change the disturbance growth rate dramatically and
that transition to turbulence can be prevented.

2. Boundary layer evolution and stability concepts
2.1. Evolution region

When uniform wall-normal surface suction is applied over a large area the well-
known asymptotic suction profile will be reached after some evolution region. If
there is an impermeable area from the leading edge to where the suction starts
the boundary layer will be allowed to grow and a Blasius velocity profile will be
developed for a zero-pressure-gradient flow. In the evolution region the profile will
then undergo a transformation from the Blasius state to the asymptotic suction
state. This spatial evolution can with a simple approach be described through a
non-dimensional evolution equation. The first step is to introduce a stream function
according to

ψ =
√

νxU∞f (ξ, η),

ξ = x
V0

U∞

√
U∞

νx
, η = y

√
U∞

νx
.

The streamwise and normal velocity components are recovered through

u(η) = U∞
∂f

∂η
, v(η) =

√
U∞ν

4x

(
η
∂f

∂η
− ξ

∂f

∂ξ
− f

)
,

respectively. Applying this to the boundary layer equations we obtain the following
third-order nonlinear partial differential equation:

∂3f

∂η3
+

1

2
f

∂2f

∂η2
+

1

2
ξ

(
∂f

∂ξ

∂2f

∂η2
− ∂f

∂η

∂2f

∂η∂ξ

)
= 0, (2.1)
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Figure 3. The displacement thickness evolution from the evolution equation (2.1) vs. the
downstream distance to the power of two. See text for comments.

with the corresponding boundary conditions

f = ξ (suction)

∂f

∂η
= 0 (no-slip)


 at η = 0 and

∂f

∂η
→ 1 as η → ∞.

Over the impermeable entry length a Blasius boundary layer is assumed to develop
and is given as input to the evolution equation. The boundary conditions at permeable
surfaces are not obvious. Taylor (1971) discussed the boundary conditions and
concluded that due to the open structure of a porous solid with large pores the
external surface stress may produce a tangential flow below the surface resulting
in the no-slip condition for the mean flow not being valid. This surface velocity is
assumed to depend on the mean tangential stress in the fluid outside the porous
material, the permeability and another material (porous) connected parameter. This
model showed that experimental results agreed well with calculation but only for
large permeabilities.

The first solution from such an evolution equation with an impermeable entry length
was obtained by Rheinboldt (1956) through a series expansion. The ansatz of a stream
function and non-dimensionalized variables for deriving the evolution equation are
not to be confused with similarity solutions. The stream function is dependent on two
variables and becomes ‘similar’ when the asymptotic suction state is reached. In figure
3 the displacement thickness (δ1) of the profiles in the evolution region is plotted.
The different curves can be seen for different impermeable entry lengths shown with
the dotted lines, i.e. they are for different values of the initial length (ξL). These are
the positions where suction starts and all the curves have in common that after some
evolution region they all merge together to a value of unity which corresponds to
the asymptotic suction region. Recall that the asymptotic suction profile possesses an
analytic expression which implies that all the characteristic length scales are exact, e.g.
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δ1 = ν/V0, δ2 = (1/2)δ1 and δ0.99 = δ1log(100), where δ2 and δ0.99 are the momentum
thickness and the actual boundary layer thickness respectively.

2.2. Modal stability characteristics

When deriving the Orr–Sommerfeld (OS) and Squire equations the so-called parallel
flow assumption is made, which means that changes in x of the mean flow are
neglected. For the continuous suction case where the mean wall-normal velocity
component (V0) is uniform and constant this assumption is exact, although the flow
is not parallel to the wall. In order to neglect the V -component the suction rate has
to be small. However, the parallel flow assumption is not needed since the cross-flow
term can be considered easily.

When the baseline flow, U = (U (y), V0, 0), is introduced into the linearized stability
equations one extra term is added to each equation, namely V0∂u/∂y, V0∂v/∂y, and
V0∂w/∂y. Here (u, v, w) denotes the fluctuation velocity components in the (x, y, z)
directions, respectively. The expression for the pressure, obtained by taking the diver-
gence of the linearized momentum equations, does not change (compared to the no
suction case) since the additional terms fulfil the continuity equation and therefore
cancel out. After the pressure expression is used in the v-equation of momentum we
apply the normal-mode hypothesis. Using the standard notation for the spatial theory,
α represents the complex streamwise wavenumber, ω the real angular frequency and
β the real spanwise wavenumber which is used in order to possibly include oblique
modes. The modified OS-equation can then be written as[(

−iω + iαU − 1

Re
D

)
(D2 − k2) − iαU ′′ − 1

Re
(D2 − k2)2

]
v̂ = 0,

where D = ∂/∂y, k2 = α2+β2 and v̂ denotes the amplitude function of the eigenmode.
This modified version of the OS-equation can be found in e.g. Drazin & Reid (1981).
A modified Squire equation can equally be derived resulting in[(

−iω + iαU − 1

Re
D

)
− 1

Re
(D2 − k2)

]
Ω̂ = −iβU ′v̂,

where Ω is the normal vorticity. So far no change in the boundary conditions of the
disturbance quantities has been made and indeed should not be necessary as long as
the permeability of the porous material has a reasonably low value.

In the present study the homogeneous boundary condition was used, i.e. v̂ =
Dv̂ = Ω̂ = 0, in all calculations since the permeability of the chosen material can
be considered small. Another boundary condition for the perturbations for a porous
plate was suggested by Gustavsson (2000), where a pressure perturbation above the
plate is added to Darcy’s law. The result is an extra term for the boundary condition
at the wall, which for small permeability would be negligible. This condition has so
far not been verified experimentally.

Squire’s theorem can be derived from the modified OS- and Squire equations in the
usual way by identification of terms in the two-dimensional and three-dimensional
cases. However, the extra terms do not contribute any additional condition to Squire’s
theorem.

2.3. Numerical methods

The evolution equation was solved with a spectral approach, with Chebyshev ex-
pansion in the wall-normal direction and a backward finite difference method in the
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marching direction with a step size of dξ = 0.001. A built-in nonlinear equation
solver in the commercially available software Matlab was used.

The stability calculations carried out on the Blasius and the asymptotic suction
boundary layers in the present section are for the spatial spectrum, i.e. the set of
equations are solved for α given a real frequency ω. The numerical method used
for these calculations was also a spectral method with Chebyshev expansion of the
dependent variable. The solution is then represented by a truncated sum of Chebyshev
polynomials according to

v̂(ỹ) =

N∑
n=0

an�
j
n(ỹ) for ỹ ∈ [−1, 1],

where N is the truncated value, an is the coefficient of the nth Chebyshev polynomial
and the superscript j denotes the j th derivative of the Chebyshev polynomials. A
domain mapping from the finite Chebyshev domain ([−1, 1]) into the semi-infinite
physical domain of the boundary layer was made through y = 1

2
y∞(1 − ỹ).

A spatial approach gives rise to a nonlinear eigenvalue problem where the eigenvalue
appears as a fourth power in the normal velocity. This can be reduced to an eigenvalue
equation of second power by a transformation of the independent variable according
to Haj-Hariri (1988): (

v̂

Ω̂

)
=

(
V̂

Ê

)
e−αy. (2.2)

In order to remove the nonlinearity in the eigenvalue problem, i.e. the remaining
second-order α-terms of the V̂ -component, one can introduce a vector quantity
according to

d =


αV̂

V̂

Ê


 ,

which takes care of the nonlinear α-terms, see e.g. Schmid & Henningson (2001).
After applying the transformation of equation (2.2) to the perturbation equations we
obtain a linear eigenvalue problem which in matrix form can be written

Ld = αMd, (2.3)

where

L =


−R1 −R0 0

I 0 0
0 −S −T0


 and M =


R2 0 0

0 I 0
0 0 T1


 . (2.4)

The Ri , Ti and S elements represent a number of terms and the only difference
between the OS- and Squire equations and the modified OS- and Squire equations is
the appearance of some extra terms marked with a brace underneath:

R2 = 4�2 + 2iURe�1 + 2�1︸︷︷︸,
R1 = −4�3 − iURe�2 − 3�2︸︷︷︸ − 2iωRe�1 + 4β2�1 + iUReβ2�0 + iU ′′Re�0 + β2�0︸ ︷︷ ︸,
R0 = �4 + �3︸︷︷︸ + iωRe�2 − 2β2�2 − β2�1︸ ︷︷ ︸ − iωβ2Re�0 + β4�0,

T1 = �1 + iURe�0 + �0︸︷︷︸,
T0 = −�2 − �1︸︷︷︸ − iωRe�0 + β2�0,

S = iβU ′Re�0.
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Drazin & Reid Present
Schmid & Henningson

Case Blasius Asymp. Blasius Blasius Asymp.

Rec 520 54370 519.4 518.7 54382
αc 0.3012 0.1555 0.303 0.3036 0.1555
cc

r 0.3961 0.150 0.3965 0.3966 0.1499
F 229.3 0.429 231.3 232.1 0.429

Table 1. Critical values for the Blasius and the asymptotic suction boundary layer.
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Figure 4. Eigenfunctions of both the Blasius (dashed lines) and the asymptotic suction case
(solid lines) at [Re, F ] = [800, 125] in (a) and (b), and at their critical values (see table 1) in
(c) and (d) respectively.

The notation for the elements in the matrixes (2.4) is chosen to be the same as used
by Schmid & Henningson (2001).

The system of equations (2.3) was solved using a built-in eigenvalue problem solver
in the mathematical software Matlab. A (temporal) program using search routines
was developed in order to provide high accuracy of the critical values given in table 1.
For a given wavenumber (α) this program searches for the Reynolds number at which
the imaginary part of the phase velocity (ci) is zero with an accuracy specified by
the user and stops only for positive values of ci . From there it chooses a new α by
means of minimizing Re. The accuracy of α is also set by the user. The critical values
in table 1 are in good agreement with other published values, see e.g. Drazin &
Reid (1981) and Schmid & Henningson (2001), and the slightly varying values may
be due to the solution method. Adding the V -component to the linearized stability
equations, resulting in the modified OS-equation, has only a minor effect on the
stability characteristics of the particular flow. The large stabilizing effect arises from
the change in mean velocity profile, see e.g. Fransson (2001).

In figure 4 the difference between the Blasius and the asymptotic suction boundary
layer eigenfunctions (streamwise and wall-normal) is illustrated for two different
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parameter values. It is noteworthy that the maximum of the u-disturbance is found
closer to the wall and that the ratio between the v- and the u-component is smaller
for the asymptotic suction boundary layer than the Blasius boundary layer.

3. Experimental design and set-up
This section deals with the design of the experimental set-up, its construction, and

the experimental techniques. In order to perform experiments in an asymptotic suction
boundary layer a plate had to be designed and built with a suitable permeable surface
material. This material was investigated in order to obtain appropriate characteristic
properties. A new asymmetric leading edge was built and investigated.

3.1. Experimental set-up

The experiments were carried out in the MTL-wind tunnel at KTH. The test section
is 7 m long, 0.8 m high and 1.2 m wide. The maximum free-stream velocity in the
test section is more than 60 m s−1; however in the present study it is only used
at low velocities. At these low velocities the turbulence intensity is around 0.02%–
0.03%. The tunnel has good temperature stability characteristics due to a built-in
heat exchanger and temperature control system. The wind tunnel is equipped with a
computer-controlled 5 degrees of freedom traversing mechanism, which is convenient
for boundary layer traverses as well as X-probe calibration. For a recent report on
the tunnel characteristics see Lindgren & Johansson (2002).

A schematic of the experimental set-up is shown in figure 5, with the FST
experimental set-up (a) and the TS-wave experimental set-up in (b). All the parts
shown in (a) are also present in (b), except for the turbulence generating grids.
A fine-meshed screen (mosquito type) was installed at the end of the test section
just upstream of the trailing-edge flap (going into the diffuser). This created a
pressure drop to compensate for the extra blockage below the plate due to suction
channels and tubing (the total blockage in the tunnel is about 7%). In the present
experiments the wind tunnel ceiling was adjusted so that the pressure gradient along
the test section was close to zero for the no suction (Blasius flow) case. When
suction was applied less than 1% of the flow in the test section was removed. This
gives rise to a slight adverse pressure gradient; however the effect on the boundary
layer flow is very small compared to the suction itself. The suction is achieved
by a centrifugal fan positioned outside the test section and connected through a
pressure vessel to the suction channels underneath the plate with vacuum cleaner
tubing.

FST was generated by three different grids (two passive, B and E, and one active, G)
mounted at different distances (xgrid) from the leading edge. The grids gave turbulence
intensities (Tu = urms/U∞) at the leading edge of the plate of 1.4%, 4.0% and 2.2%,
respectively. In figures 6 and 7 the energy spectra (at x =400 mm) and the FST decay
in the free stream for the three different grids are plotted respectively. The typical
power-law decay, Tu = C(x − x0)

b, is applied to the Tu-decay data and plotted with
solid lines in figure 7 for the three different grids. Here x = 0 is at the leading
edge of the plate, whereas x0 is a virtual origin. The constant C and exponent b are
parameters to be determined through curve fitting to experimental data. In the
curve fits b was set to −0.5 which is the value for fully isotropic turbulence.
The virtual origin was determined consistently by taking the intersection point with the
x/M-axis from plots of 1/Tu2 = x/M (M being the mesh width of the grid). The fits
are to the unfilled symbols in figure 7, which correspond to data collected when
no suction was applied, whilst the filled symbols are when suction was applied.
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The virtual origin is found to be displaced downstream of the grid for all cases (see
figure 5a).

The active turbulence-generating grid, injecting secondary fluid upstream and in
that way providing different Tu-levels, is described thoroughly in Fransson (2001),
and in figure 8 a sketch of the grid is shown. The secondary fluid was driven by
a modified vacuum cleaner. In the present investigation only one injection rate was
applied. In figure 9 the evolution of both the longitudinal Taylor microscale (γ ) and
the integral lengthscale (Γ ) are shown for the active grid. As expected the scales
grow with downstream distance due to the dissipation of the smallest scales. The flow
behind the active grid is homogeneous and isotropic 20M downstream of the grid
position, which was checked with X-probe measurements. The two passive grids have
been used extensively in previous works and the Taylor microscale data were obtained
from Westin (1997). In table 2 the characteristic data of the turbulence-generating
grids are summarized.
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injection) are plotted with � and × symbols respectively. Filled symbols of Γ are from spatial
correlation measurements and unfilled from the autocorrelation. γ was determined from the
autocorrelation alone, which gives a better estimate of this scale (see Fransson 2001 for further
details).

Grid Tu (%) γ (mm) M (mm) dp (mm) Sg Bar geometry xgrid (mm)

B 1.4 7 ± 1 23 3.5 0.28 Round −1500 (65M)
E 4.0 7 ± 1 50 10 0.36 Square −1180 (23.5M)
G 2.2 9 ± 1 50 5 0.19 Round −1400 (28M)

Table 2. Characteristic data of the turbulence-generating grids. For definitions of M , dp and
Sg see figure 8.

TS-waves were generated by alternating suction and blowing at the wall through
a slot in a plug mounted in the plate. The slot is 330 mm long in the spanwise
direction and 0.8 mm wide. Two plugs (slots) are present, one at x = 205 mm from
the leading edge and one at x = 1850 mm. The latter is used for investigations in the
fully developed asymptotic suction boundary layer. At this plug the porous plate was
made impermeable over the whole spanwise width by sticking tape underneath the
plate of width 50 mm in the flow direction where the plug was located (in order to
maintain the two-dimensionality of the flow). The disturbance signal was generated by
the computer through a D/A-board to an audio amplifier driving the loudspeakers.
The loudspeakers are connected to the disturbance source through ten flexible tubes.
A more thorough description of the disturbance generating system can be found in
Elofsson (1998).

An asymmetric leading edge was specially designed for this experimental set-up, to
give a relatively short pressure gradient region without a suction peak at the leading
edge. The local pressure distribution near the leading edge influences the stability
of the flow further downstream and therefore the design of the leading edge is an
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important issue, see e.g. Klingmann et al. (1993). In figure 10 the final shape of the
present leading edge, which is described by two cubic Bézier-curves, is shown. The
commercial flow solver CFX 4.2 was used to design the leading edge for the present
set-up. Two-dimensional laminar flow calculations were performed in the test section
of the wind tunnel, i.e. the ceiling (upper wall) and the floor (lower wall) of the tunnel
were simulated together with the plate. The present leading edge (with a thickness of
30 mm) gives a near-Blasius profile as close as 100 mm from the leading edge, when
the suction channel and the suction tubing are absent. The analytic expression for the
shape and further information about the design process together with experimental
verification of the design can be found in Fransson (2001).

3.2. Porous material

For the permeable plate a porous plastic material was chosen. Compared to laser-
drilled plates (discrete holes) it is only one tenth of the price and it has several
advantages. For instance, the plastic material allows quite accurate hot-wire readings
close to the wall due to the low heat conductivity, and its pore size and pore spacing
is small, making the surface-normal velocity ‘uniform’ over the surface area, which is
preferable in this experiment to that obtained with a plate with discrete holes.

The porous plates consist of a sintered plastic material with an average pore size
of 16 µm (given by the manufacturer). One of the surfaces can be considered smooth
and the other rough (the smooth one was used as the upper surface). The standard
deviation of the roughness is about 0.38 µm on the smooth side, which was calculated
from the surface roughness measurement in figure 11(a, b) (note the scale). In
figure 11(c) the needle traces from the blown-up area in (a) is shown.

The flow properties of the porous material were characterized by a piston experiment
in which the permeability of the porous material was determined by placing a piece
of the porous material (thickness t = 3.2 mm) over the end of a 0.9 m, 4 cm diameter
Plexiglas pipe and measuring the pressure drop over the porous material when a
piston was forced through the pipe with a linear motor. This was performed at
various velocities (V ) in the range 0.4–1.2 cm s−1 and it was found that the pressure
drop p varied in linear proportion to the flow velocity through the material (see
figure 12). From this the permeability (k) of the material was determined from
Darcy’s law as k = V tµ/p, where µ is the dynamic viscosity, and was found to be
k = 3.7 × 10−12 m2.
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A load-test of the porous material was performed in order to design the inner
structure of the plate such that the surface deformation was sufficiently small when
suction was applied. Three tests were performed and the average modulus of elasticity
was determined to be 974 MPa. On the suction side longitudinal T-profiles a certain
spanwise distance apart supported the plate. The spanwise distance (Ls) between
these T-profiles was determined by assuming a 1.5 kPa pressure difference across the
plate with the restriction of a bending deviation (wb) of less than 1% of the boundary
layer thickness (which was 5 mm resulting in wb = 50 µm). This gave Ls = 58mm and
the Ls finally used was 50 mm. Since the actual pressure difference that was applied
in the final experiment was about 200–250 Pa there was a large margin in the load
assumption.
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Figure 14. Photos of the construction work. (b) The two front plenum chambers together
with the larger spanwise drilled suction holes and the pressure tubing for the static pressure
measurements.

3.3. Plate construction

The test plate is built as a sandwich construction and a schematic is shown in figure 13.
At the front of the plate the removable leading edge is mounted and at the back there
is the possibility to extend the plate by additional plates of aluminium. The plate is
constructed on a base plate of aluminium with a frame, and is designed with two
250 mm long plenum chambers starting 360 mm from the leading edge followed by
a 1750 mm long plenum chamber. The subdivision into three chambers is for future
work in which the suction rate is allowed to change with the downstream distance.

As mentioned above, inside the plenum chamber spacing elements made of hollowed
T-profiles are glued, with a spanwise separation of 50 mm, in order to support the
porous plates and avoid bending of the plates when suction is applied. On these
T-profiles three porous plates with the total dimension 2250×1000×3.2 mm3 (length,
width, thickness) were mounted in the frame plate. On a spanwise line in the base
plate five large holes (30 mm) were drilled at nine positions to which nine suction
channels were connected. This ensured a uniform pressure in the plenum chamber,
which was checked by measuring the static pressure at 40 different positions in the
chamber. In figure 14 photos are shown of the construction process. The two front
chambers are seen in figure 14(b) as well as the larger spanwise distributed suction
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Figure 15. Photo of the plate together with the leading edge mounted in the wind tunnel.

holes. Finally, the finished plate mounted in the test section of the MTL wind tunnel
is shown in figure 15.

3.4. Measurement technique

Single hot-wire probes operating at constant temperature were used to measure the
streamwise velocity component. One probe could be traversed in all three spatial
directions whereas a second probe was located at a specific spanwise position (in
the centre of the tunnel). Both probes were traversed in the x- and y-directions by
the same traversing system and their x- and y-positions were the same. This allowed
two-point spanwise space correlation measurements.

The single probes were made of 2.5 µm platinum wires with a distance between the
prongs of approximately 0.5 mm. The calibration function according to Johansson &
Alfredsson (1982) was used, where an extra term is added to King’s law to compensate
for natural convection which makes it suitable for low-speed experiments:

U = k1

(
E2 − E2

0

)1/n
+ k2(E − E0)

1/2. (3.1)

4. Experimental results
In the next three subsections the experimental results will be shown and discussed.

In the first section the results for the Blasius boundary layer will be presented showing
the baseline flow properties and TS-wave experiments. The next section shows the
evolution region (from the Blasius to the asymptotic suction state) followed by TS-
wave experiments in the asymptotic suction region. Finally FST experiments will be
presented where the Blasius and the asymptotic suction results are presented together
for direct comparisons.

The experiments reported here were made at a free-stream speed of 5.0 m s−1. Since
stability experiments are sensitive to the Reynolds number Re, accurate determination
of the viscosity is necessary, meaning that both temperature and pressure have to
be monitored and measured. For the suction case the suction speed was 1.44 cm s−1,
corresponding to a pressure difference across the porous plate of p = 221 Pa. This
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distribution at x = 300 mm.

gives an asymptotic boundary layer thickness of 5 mm and a Reynolds number based
on the displacement thickness of 347, which corresponds to Cq = 2.88 × 10−3.

4.1. TS-waves in a Blasius boundary layer

In order to verify the flow set-up, measurement technique and disturbance generation,
the stability characteristics of the Blasius boundary layer for two-dimensional-wave
disturbances were determined and compared with previously reported results from
the MTL-wind tunnel.

The pressure distribution over the plate was determined by traversing a hot wire
close to the plate surface but outside the boundary layer, using the Bernouilli equation
to obtain the pressure. This method was used and verified by Klingmann et al. (1993)
and gives better accuracy than a static pressure tube for low velocities. In figure 16(a)
the streamwise pressure distribution is plotted for the investigated downstream
region on the flat plate. Two different measurements are shown, one at constant
y (=50 mm) and the other by traversing the probe to a position just outside the
boundary layer. As can be seen there is hardly any difference between the two
measurements except at the leading edge, and the variation for x > 300 mm is within
±1% of the dynamic pressure. The relatively long pressure gradient region observed
in figure 16(a) is due to the thickening of the plate due to suction channels and tubing
underneath the plate that are present in this experiment. The suction channels alone
contribute an extra vertical blockage of 35 mm. In figure 16(b) the spanwise pressure
distribution is plotted over a spanwise distance of 140 mm at x = 300 mm for two
different y-positions in the free stream, and is shown to vary within ±0.75% of the
dynamic pressure. As expected measured boundary layer profiles for x = 300–2400 mm
and z = ±70 mm show excellent agreement with the Blasius profile; for details see
Fransson (2001). It is notable that the hot-wire reading very close to the wall is
quite accurate, making it possible to measure velocities down to 0.5 m s−1 without
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any deviation from the theoretical curve (cf. figure 1). This is due to the calibration
function as well as the low heat conductivity of the porous material.

Controlled stability experiments were performed, where the disturbance to be
studied is generated with a known frequency. The first slot located in the leading
edge is used to verify the experimental set-up, and the second slot far downstream
was used to perform experiments that later will be compared with the TS-wave study
in an asymptotic suction boundary layer. In figure 17 the amplitude distribution of
the TS-wave at F = 100 is shown (in this and following figures A corresponds to
the maximum measured amplitude in the profile). The experiment (�) shows good
agreement with linear parallel theory (solid line), where both the first and the second
branch are well captured by the experiment. The TS-wave is generated at x = 205 mm
and decays until reaching the first branch at approximately Re = 728.5. From there on
it grows in amplitude until reaching the second branch at approximately Re = 1233.5
where it starts to decay.

In figure 18 the disturbance amplitude distribution profiles are shown corresponding
to the three filled symbols (�) in figure 17. In figure 18(a) the two-dimensionality of
the TS-wave is illustrated by plotting the profiles at three different spanwise positions
together with the OS-solution. Parts (b) and (c) show the smallest (least amplified)
and the largest (most amplified) profiles, and in (b) (at x = 550 mm) the smallness
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is revealed near the boundary layer edge where the measured data appear more
scattered than in (c) (at x = 1500 mm). Furthermore, in (c) a deformation of the
amplitude distribution at the inner maximum can be seen. This deformation has been
observed in previous works, see e.g. Klingmann et al. (1993) and Ross et al. (1970),
at downstream distances far from the disturbance source.

The phase velocity (c = ω/αr ) of the wave can be determined simply by determining
the real part of the wavenumber (αr ) since the angular frequency (ω) is known. In
figure 19 the phase distribution in the streamwise direction is plotted. The phase
is taken at the wall-normal distance above the plate where the inner maximum
amplitude appears; αr is then determined by calculating the phase gradient (∂φ/∂x),
and it is seen to be constant throughout the whole downstream distance investigated.
The symbols are experimental data, the solid curve is the OS-solution, and the dashed
line is the curve fit for the determination of the gradient. This curve fit gives a phase
velocity of 0.34U∞ compared with the theoretical value based on the Blasius profile
of 0.36U∞.

From now on all stability results are from the second disturbance slot in the
plate located at x = 1850 mm corresponding to Re = 1350. This is also the region
where the stability experiments were performed for the asymptotic suction boundary
layer. In figure 20 the amplitude distribution profiles are plotted for F = 59 at five
different downstream positions. The first x-position closest to the disturbance source,
in fact only 50 mm from the source, is not fully developed in the upper part of the
profile when compared to the OS-solution. However, from the second x-position the
agreement is excellent in this part.

In figure 20 the corresponding phase distribution profiles are also plotted, and they
clearly show the phase shift of π radians which can be shown to occur where ∂v′/∂y
changes sign, i.e. at the wall-normal amplitude (v′) maxima. The experimental data
are in good agreement with the OS-solution (solid line).

For F = 59, the TS-wave is unstable in this region, which is between branches I
and II. The amplitude growth of the TS-wave is shown in figure 21 together with the
amplitude evolution predicted by the OS-equation. The phase velocity is c = 0.29U∞
determined from figure 22 whereas the corresponding phase velocity obtained from
the OS-solution is c = 0.33U∞. However, the agreement has to be judged as good since
there are many external conditions that may influence the result this far downstream
from the leading edge. When compared with figure 19 one can observe that the phase
velocity is larger just as for the frequency, but in this case the trend is somewhat
stronger and the effect is more apparent.
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Figure 21. Amplitude evolution of the TS-wave at F = 59.

Experiments were also performed at two other frequencies (F = 29 and F = 81)
which both showed good agreement with linear stability theory. The latter frequency
(at the second slot) is close to the second branch and a clear decay of the amplitude
growth was visible. To fit the experimental data to the OS-solution it was necessary
to change the Reynolds number. The change corresponds to a virtual (v) origin at
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xv = − 15.8 mm, which can be considered small (recall the large distance from the
leading edge).

In summary the results indicate that the presence of the passive porous plate
does not seem to affect the stability characteristics of the boundary layer flow.
The amplitude growth of the TS-wave agrees with linear parallel theory as do the
amplitude and phase distribution profiles.

4.2. TS-waves in an asymptotic suction boundary layer

In this subsection the baseline flow when continuous suction is applied will be
presented together with TS-wave experiments in the fully developed asymptotic
suction region.

For the present experiments the flat plate and wind tunnel test section were adjusted
for zero pressure gradient with no suction through the plate. Much effort was put in
to achieving the zero pressure gradient by changing the floor and ceiling positions
of the test-section. Recall that the thick plate together with its suction channels
and additional blockage due to suction tubing makes the adjustments more difficult.
Therefore, no additional geometrical adjustments of the test section were made for
the suction case. The result of different suction rates on the pressure distribution in
the streamwise direction is shown in figure 23.

All experimental results are for a pressure difference (p) over the porous plate of
221 Pa, which corresponds to a suction velocity of 1.44 cm s−1 using the permeability
value determined through the piston experiment described in § 3.2.

In figure 24 several velocity profiles are plotted in the evolution region, where the
wall-normal distance η (= y

√
U∞/xν) is chosen in order to clearly follow the profile

evolution. The development of the boundary layer from the Blasius towards the
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asymptotic profile shows good agreement with theory, i.e. the evolution equation, and
can be observed in figure 25 (note the scaling). The dash-dotted lines are from the
Blasius solution and the solid lines from the evolution equation. L is the impermeable
entry length.

The uniformness and two-dimensionality of the flow was checked in the asymptotic
suction region by comparing the velocity profiles at different spanwise and downstream
positions. There are in total fourteen mean velocity profiles plotted in figure 26, and
they show excellent agreement with the theoretical exponential curve (solid line), i.e.
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the analytical asymptotic suction profile. The wall position (y0) and the displacement
thickness (δ1) were determined by fitting the measured data (u(ymeas)) to

u(ymeas)

U∞
= 1 − exp(−(ymeas − y0)/δ1) (4.1)

by means of the least-square method. This is also a way to verify the suction velocity
through the porous plate with the suction velocity corresponding to the pressure
difference applied. Since the displacement thickness is δ1 = ν/V0, the suction velocity
can easily be calculated once δ1 is determined from the curve fit. Any profile chosen
to verify the suction velocity 1.44 cm s−1 agrees within 9%.

In the TS-wave experiments for the asymptotic suction boundary layer the slot
at x = 1850 mm was used in order to study the wave in a fully developed boundary
layer. However, due to the presence of the slot (50 mm in the streamwise direction)
the porous material was made impermeable over the whole spanwise length in order
to ensure the two-dimensionality of the flow as was mentioned in § 3.1. This allows
the boundary layer to grow slightly and a small increase of δ1 may be observed
downstream of the slot. This results in a Reynolds number increase and for the
theoretical comparison Re = 382 was used, which was extracted from the profiles.
For the present Re the TS-wave will decay rapidly after its generation. In figure 27
the amplitude distribution profiles are shown for different downstream positions.
The solid line is the solution from the modified OS-equation and the dotted line
is the ordinary OS-equation. Note that the last profile shown is only 350 mm from
the disturbance source. Close to the disturbance source the experimental results show
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Figure 27. Amplitude distribution profiles for different downstream positions in an asymptotic
suction boundary layer for F = 59. Symbols are measured data, solid lines are the modified
OS-solution, and dotted lines the OS-solution.

quite good agreement with the modified OS-solution, whereas further downstream
the disturbance is seen to be spread out towards the upper part of the boundary layer
and from x = 2100 mm the measured data start to appear somewhat scattered. The
corresponding phase distribution profiles are plotted in figure 28 with the solid line
belonging to the modified OS-solution. The agreement is good in the upper part of
the boundary layer and in the free stream, but in the theoretical phase distribution
there is a zigzag-formation in the middle of the boundary layer that is not apparent
in the experimental results. It is the ratio of the imaginary and real parts of the
eigenfunction that determines the shape of the phase distribution and it is a large
decrease with a minimum of this ratio at y/δ1 = 2.7 followed by an increase that gives
the zigzag-formation of the theoretical result.

The phase velocity of the TS-wave with F = 59 is determined in figure 29. The solid
line is the modified OS-solution and this almost corresponds to a curve fit to the
measured data. The dotted line is the ordinary OS-solution. The experimental phase
velocity is determined to be c =0.48U∞, which is the phase velocity predicted by the
modified OS-solution.

The amplitude decay is shown in figure 30 together with theoretical results. The
theoretical results overpredict the stability of the TS-wave. The experimental result
gives a damping factor of αi = 0.0153 mm−1, when the first six points are used for the
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boundary layer.

curve fit, and the modified OS-solution predicts αi =0.0263 mm−1, i.e. a factor 1.72
higher.

TS-wave measurements in the asymptotic suction boundary layer were also made
for a higher frequency, F = 84.4. The same conclusions can be drawn as for the
lower frequency experiment. Good agreement with theory is found for the amplitude
distribution profile close to the disturbance source and the theoretical decay factor is
still overpredicted compared with the experimental results. Some possible explanations
for this discrepancy will be discussed in § 5.
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4.3. Experiments with free-stream turbulence

4.3.1. Disturbance growth

Free stream turbulence (FST) gives rise to regions of high and low streamwise
velocity (streaky structures) and in a Blasius boundary layer the streamwise
disturbance energy grows in linear proportion to the downstream distance. These
streaky structures move slowly in the spanwise direction and if the streamwise
disturbance amplitude is measured (urms) it is seen to increase with the downstream
distance when no suction is applied, whereas in the suction case this amplitude
increase was found to be eliminated. This can be observed in figures 31 and 32
where both the mean velocity and disturbance profiles are plotted for both cases, i.e.
with and without suction respectively, for the TuB-level and for different downstream
positions. The position above the plate where the maximum urms-value appears hardly
changes in y/δ1-units and is approximately 1.5; this corresponds to 1/2 and 1/3 of the
boundary layer thickness without suction and with suction, respectively. The results
are similar for the other two grids (these data can be found in Fransson 2001).

In figure 31(a) the mean velocity profiles hardly show any distortion from the
theoretical Blasius profile despite disturbance levels up to 8% inside the boundary
layer far downstream. Each solid curve in (b) is a curve fit to data in order to more
easily separate the different downstream positions from each other. It is clearly seen
that the amplitude increases with increasing x.

For the suction case the mean flow is indistinguishable from the asymptotic suction
profile as can be seen in figure 32(a). A large difference is, however, that the
disturbance level amplitude inside the boundary layer is much smaller than for the no
suction case, and that the level is decreasing slightly with increasing x for the profiles
in figure 32(b). Note that the decay is similar to the FST decay observed in the upper
part of this figure.

Fransson (2001) reported vrms-data obtained from laser Doppler velocimetry
measurements both for the Blasius and the suction boundary layers. These results
show that in both cases the vrms-profiles are similar and decrease monotonically from
the free stream towards the wall. This indicates that the suction does not strongly
influence the normal velocity fluctuations close to the wall.

In figure 33 the displacement thickness evolution, with and without suction, is
plotted versus the downstream distance for different FST intensities. In a Blasius
transition region when the profile approaches the turbulent one an increase in the
displacement thickness is expected. According to this figure the displacement thickness
seems to increase somewhat in both the suction and no suction case when the Tu-level
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Figure 31. Data for different downstream positions from grid B without suction.
(a) Mean velocity profiles, and (b) urms-profiles for the same x-positions as in (a).

is increased. The dashed and solid lines in figure 33 correspond to the theoretical
laminar δ1-evolution of the Blasius and the suction case, respectively.

In figure 34 the disturbance amplitude, here chosen as the maximum value of the
disturbance profiles, for the three different grids is plotted versus the downstream
distance from the leading edge. For the no suction cases the disturbance amplitude
has been found to grow in proportion to x1/2 and a similar development is observed
here. For grid B transition does not occur over the length of the measured region,
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Figure 32. As figure 31 but with suction through the porous plate.

despite the fact that the urms-level is above 8% at the end. For high enough Tu-levels
the FST will force the flow to transition. For grid G a maximum of nearly 17% in the
turbulence intensity is found at x ≈ 1800 mm. Such a maximum is usually observed in
the intermittent region where the flow consists both of laminar regions and turbulent
spots. Further downstream the intensity decreases, which is expected when the flow
goes towards a fully developed turbulent stage. For grid E, measurements were only
made up to x =700 mm where a similar high level was observed.
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When applying the present rate of suction it is found that transition does not occur
for any of the grids, although the mean velocity profiles deviate from the asymptotic
profile at the most downstream positions for grid E. Instead the fluctuation level
inside the boundary layer reaches an almost constant level for all three grids and the
level is in each case close to that where the suction starts. An interesting observation
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is that this level is proportional to the level of the FST. This is shown in figure 35
where the maximum urms-values (or constant level in the suction case) versus the local
Tu-level are plotted for both the suction and no suction case.

The data presented in figure 34 appear somewhat scattered and another way to
plot the disturbance evolution is to evaluate the average disturbance energy (Eu) by
integrating u2

rms across the boundary layer. This measure is plotted in figure 36 versus
the downstream distance from the leading edge. The figures show the well-known
linear growth of the disturbance energy with the downstream distance for the no
suction case and for all Tu-levels. In the case with suction the energy growth ceases
and a more or less constant level for each grid is obtained.

4.3.2. Spanwise scale of the streaks

The spanwise scale of the streaks can be determined through two-point correlation
measurements of the streamwise velocity component. It is well known that the
position where the streamwise correlation coefficient (Ruu) shows a distinct minimum
can be interpreted as half the dominating spanwise wavelength of the streaks (see e.g.
Matsubara & Alfredsson 2001), and will from here on be denoted λ1/2

z . In order to
determine this spanwise scale the correlation measurement should preferably be done
inside the boundary layer where the maximum urms appears, as this is the position
where the correlation coefficient will appear strongest. The spanwise correlation
coefficient is defined as

Ruu =
u(z)u(z + z)

u(z)2
.

In figure 37 two correlation measurements are shown, one measured at the boundary
layer edge (�) and the other where the maximum urms appears (�). In the former
the correlation is close to one at the first measuring point and it decays gradually to
become uncorrelated far away. In the latter measurement the correlation coefficient
shows the (previously mentioned) distinct minimum. An interesting observation is
the zero crossing of the correlation coefficient, which will be shown to be as good a
measure of the spanwise scale of the streaks as the minimum value. In figure 38 the
correlation coefficient is plotted for gradually increasing distance (y) from the plate.
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Total number of measurement points is 392.

Close to the surface the data seem to be somewhat scattered, which is due to the
short sampling time (30 s). From data such as shown in figure 38 one can draw a
contour plot in the (y, z)-plane for an overview of the structure inside the boundary
layer. This was done for different Tu-levels and x-positions with and without suction
and is shown in figure 39 (for TuB and TuG) and 40 (for TuE with suction). Figure 39
shows that the spanwise scale of the streaky structures is only slightly decreased by
suction, despite a twofold reduction in boundary layer thickness. This indicates that
disturbances inside the boundary layer are strongly dependent on the scale of the
FST. Note that the minimum value is clearly distinguishable in all cases, including
figure 40 with TuE at x = 500 mm.

Matsubara & Alfredsson (2001) showed that the spanwise scale of the streaks
observed near the leading edge seems to depend on the FST scales introduced into
the boundary layer at an early stage of the receptivity process. Further downstream
this scale seems to adapt to the boundary layer thickness and grows in proportion to
this thickness. In the suction case the scenario is slightly different since the spanwise
scale is hardly changed compared to the spanwise scale observed in the Blasius
boundary layer, despite the fact that the boundary layer thickness is only half of that
in a Blasius layer. This result was obtained for all three FST intensities tested. The
conclusion from figure 39 is that the effect of suction on the streaks is compression, i.e.
since the boundary layer thickness decreases the streaks are compressed in the wall-
normal direction but the spanwise scale is preserved. This creates a wider structure in
terms of boundary layer thickness compared to the Blasius case.

In figure 41 the evolution of the spanwise scales of the streaks from all three grids
are shown. The minimum values of the correlation coefficient (Ruu) were determined
by fitting a third-order polynomial to the measured data and the zero crossing of Ruu

by fitting a second-order polynomial. For all cases there is a tendency for the scales
to increase with x; however the effect is strongest for grid B (figure 41a). If there is
a difference between the no suction and suction cases, a tendency towards a slower
growing spanwise scale in the suction case compared to the no suction case may be
observed. The spanwise scale of the streaks seems to decrease with increasing FST
intensities according to figure 41. As can be seen in figure 41(d) the zero crossing is an
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Figure 42. Evolution of the spanwise scale of the streaks for all cases plotted together with
the Blasius boundary layer thickness evolution (dashed line). Same data as in figure 41.

equally good measure of the spanwise scale as the minimum value of the correlation
coefficient. The zero crossing cannot have a direct physical interpretation, but is easier
to determine from an experimentalist’s point of view. All ratios of the minimum value
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of the correlation coefficient and the zero crossing of the present data collapse at a
value of 1.68 ± 0.23.

In figure 42 the evolution of the spanwise scales of the streaks is plotted again (same
data as in figure 41) together with the Blasius boundary layer thickness evolution. This
figure allows a direct comparison between all cases and confirms previous studies,
see e.g. Matsubara & Alfredsson (2001), that the spanwise scale comes close to the
boundary layer thickness for low Tu-levels in the Blasius boundary layer.

5. Discussion and summary
In the present work a successful experimental set-up to establish the asymptotic

suction boundary layer in a wind tunnel is described. The main interest of the study
is not to develop a practical suction set-up but to establish a generic flow situation
where the effect due to suction on disturbance development inside the boundary layer
can be investigated. The suction coefficient Cq is fairly high compared to that given
in the literature as a reasonable value for flow control.

A test plate with a porous surface material was constructed and had a specially
designed leading edge with a short region of non-zero pressure gradient. The mean
flow development from the leading edge of the plate is shown to be in good agreement
with a theoretical boundary layer analysis and when the asymptotic suction region
is reached there is an excellent agreement between the theoretical and experimental
boundary layer profiles.

The stability equations for modal disturbances are derived where the wall-normal
mean velocity modifies the standard OS-equation. The effect of this component as
well as the change in mean velocity profile is discussed, and it is shown that the main
effect is due to the profile change.

TS-waves are generated in the experiment through a spanwise slot and the
development of the waves over the plate without suction is shown to be in
good agreement with standard stability theory and previous experiments. The same
conclusion can be drawn for the asymptotic suction boundary layer although in that
case the waves are strongly damped. The correspondence between the streamwise
amplitude profiles and the phase velocity is good, but the decay factor predicted by
linear stability theory is slightly overestimated compared to the experimental results. It
is not clear why this difference occurs but four main possibilities for the discrepancy
have been identified, namely (i) the adverse pressure gradient, (ii) the disturbance
introduced by the width of the slot which may give small deviations of the mean
profile, (iii) the low wave amplitude, and (iv) a possible obliqueness of the measured
disturbance. The adverse pressure gradient that is present in the asymptotic suction
region (due to the suction, see figure 23), influences the stability characteristics in
such a way that the flow would be less stable. This would bring the theoretical results
closer to the experimental ones. However, the pressure gradient is small and PSE
calculations with the present pressure gradient, show hardly any effect on the stability
characteristics (A. Hanifi, private communication).

Secondly, the profile is affected by the impermeable streamwise length of 50 mm in
connection with the disturbance slot. Suddenly stopping the continuous suction over
some streamwise distance would allow the boundary layer to grow and the profiles
to become slightly disturbed when passing above the impermeable slot. It is well
known that even small deviations can give large differences in the decay rate. Also
the displacement thickness becomes larger, as noted in the measurements. However,
this latter effect was taken into account in the stability calculations by using a higher
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Reynolds number of Re =382 that was extracted from the profiles in the region of
interest.

Thirdly, one cannot rule out the possibility that the small amplitude of the wave
disturbances in the experiment may make the measurements susceptible to noise.
This would increase the measured level, especially at the more downstream positions,
thereby giving a too low decay rate.

Finally, even though the generated disturbance is two-dimensional the external
disturbances and high noise level may cause an oblique mode which is less stable
than the corresponding two-dimensional disturbance. Three-dimensional disturbance
analysis reveals that the theoretical disturbance growth approaches the experimental
one as β increases (equal at around β = 0.25). However, this mode has a phase velocity
of 0.70U∞ (compared to 0.48U∞) which in turn simply moves the mismatch to the
phase velocity. Despite this, an obliqueness cannot be excluded as a possible factor.
A combination of all the suggested explanations is the most likely scenario, making
the situation rather complicated.

The second part of this study deals with the development of FST-induced disturb-
ances. Direct comparisons between the no suction (Blasius) and suction cases were
made. In the no suction case the results were similar to earlier work, showing a linear
growth of the disturbance energy in the downstream direction until spot formation
occurs. However, in the suction case the growth of the disturbance amplitude has been
shown to cease, and the present amplitude level is essentially constant throughout
the measured region for this particular suction velocity. In consequence, transition is
inhibited for all cases with suction. The ‘constant’ level was found to be proportional to
the FST level. Note that for larger suction rates the disturbance amplitude decays, and
for smaller rates the growth is simply damped (cf. Yoshioka, Fransson & Alfredsson
2003).

The spanwise scale of the streaks is maintained when suction is applied like the no
suction case, despite a twofold boundary layer thickness reduction. In both cases the
receptivity process at the leading edge is similar, due to the Blasius boundary layer
that develops through the impermeable entry length for both the suction and the no
suction case. This might explain the development of similar spanwise scales in the
two studied cases since the initial spanwise scale is probably set by the receptivity
process.

The spanwise wavenumber of the optimal perturbation in a Blasius boundary
layer is at β = 0.775 when normalized with the displacement thickness (see e.g.
Andersson, Berggren & Henningson 1999 and Luchini 2000). For the asymptotic
suction boundary layer the optimum is at β = 0.53 (Fransson & Corbett 2002), i.e.
a somewhat widened structure inside the boundary layer compared to the Blasius
case. This is in agreement with the present experiments even though the experiment
shows even more widened structures inside the boundary layer for low FST levels (see
figure 39). In some recent papers (Andersson et al. 1999; Luchini 2000; Matsubara
& Alfredsson 2001) comparisons have been made between the optimal perturbation
theory and experiments at Tu= 1.5%. The streamwise disturbance profiles were found
to agree well, but initially there is a mismatch in the spanwise wavelength of the streaks
as pointed out by Matsubara & Alfredsson (2001). The results of Fransson & Corbett
(2002) show similarly good agreement for the asymptotic boundary layer also for the
disturbance distribution normal to the wall.

The experimental and theoretical results support the following hypothesis. When
FST of a sufficient level is present, disturbances, which develop into streaks, are
triggered inside the boundary layer. The scale of the triggered disturbances depends
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on both the level and the scale of the FST. Higher FST level implies that more energy
is present over the whole range of scales (see figure 6). A certain level is needed to
generate disturbances within a certain scale interval, but if this level is high enough
the boundary layer would preferably amplify disturbances whose scales are close to
that of the optimal disturbance. This is in accordance with the experiments, which
clearly show that the spanwise scale of the streaks decreases with increasing level of
FST (as shown in figure 41), approaching the scale given by optimal perturbation
theory. For instance for the Blasius boundary layer in the range x = 200–500 mm the
streak spacing (λ1/2

z ) is between 6 and 7.5 mm when subjected to TuE (see figure 41c)
where the theory gives λ1/2

z = 5.4–8.5mm.
Finally one should bear in mind that for transition it is not only the streak

amplitude and scale that is important. The streaks will not break down to turbulence
without the development of a secondary instability. The triggering of the secondary
instability may be due to the FST acting on top of the streaks. In order to obtain a
growing instability the streak amplitude must be sufficiently large. With the suction
rate of the present experiments it seems that the amplitude of the streaks is not high
enough for the secondary instability to be able to trigger breakdown to turbulence.

We wish to thank Mr Marcus Gällstedt at the Department of Mechanics at KTH
for his skillful construction work of the leading edge. This work has been financially
supported by The Swedish Research Council (VR) which is gratefully acknowledged.
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